Chemical sensitivity to the ratio of the cosmic-ray ionization rates of He and H2 in dense clouds

نویسنده

  • V. Wakelam
چکیده

Aims. To determine whether or not gas-phase chemical models with homogeneous and time-independent physical conditions explain the many observed molecular abundances in astrophysical sources, it is crucial to estimate the uncertainties in the calculated abundances and compare them with the observed abundances and their uncertainties. Non linear amplification of the error and bifurcation may limit the applicability of chemical models. Here we study such effects on dense cloud chemistry. Methods. Using a previously studied approach to uncertainties based on the representation of rate coefficient errors as log normal distributions, we attempted to apply our approach using as input a variety of different elemental abundances from those studied previously. In this approach, all rate coefficients are varied randomly within their log normal (Gaussian) distribution, and the time-dependent chemistry calculated anew many times so as to obtain good statistics for the uncertainties in the calculated abundances. Results. Starting with so-called “high-metal” elemental abundances, we found bimodal rather than Gaussian like distributions for the abundances of many species and traced these strange distributions to an extreme sensitivity of the system to changes in the ratio of the cosmic ray ionization rate ζHe for He and that for molecular hydrogen ζH2 . The sensitivity can be so extreme as to cause a region of bistability, which was subsequently found to be more extensive for another choice of elemental abundances. To the best of our knowledge, the bistable solutions found in this way are the same as found previously by other authors, but it is best to think of the ratio ζHe/ζH2 as a control parameter perpendicular to the ”standard” control parameter ζ/nH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining the cosmic ray ionization rate in dynamically evolving clouds

The ionization fraction is an important factor in determining the chemical and physical evolution of star forming regions. In the dense, dark starless cores of such objects, the ionization rate is dominated by cosmic rays; it is therefore possible to use simple analytic estimators, based on the relative abundances of different molecular tracers, to determine the cosmic ray ionization rate. This...

متن کامل

Cosmic-ray ionization of molecular clouds

Context. Low-energy cosmic rays are a fundamental source of ionization for molecular clouds, influencing their chemical, thermal and dynamical evolution. Aims. The purpose of this work is to explore the possibility that a low-energy component of cosmic-rays, not directly measurable from the Earth, can account for the discrepancy between the ionization rate measured in diffuse and dense interste...

متن کامل

The Implications of a High Cosmic-ray Ionization Rate in Diffuse Interstellar Clouds

Diffuse interstellar clouds show large abundances of H3 which can be maintained only by a high ionization rate of H2. Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper we find that the standard propagated cosmic-ray spectrum predicts an ionization...

متن کامل

The galactic cosmic ray ionization rate.

The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H(3)(+) in diffuse clouds and the recognition that dissociative recombination of H(3)(+) is fast has led to an upward revision o...

متن کامل

Cosmic Ray Compaction of Porous Interstellar Ices

We studied the compaction of microporous vapor-deposited ice films under irradiation with different ions in the 80Y400 keVenergy range.We found that porosity decreases exponentially with irradiation fluence, with amean compaction area per ion that scales linearlywith the stopping power of the projectile S above a threshold St 1⁄4 4 eV8 . The experiments roughly follow a universal dependence of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006